The extent, impacts and management of ungulate translocations

View/ Open
Date
2013-06-13Author
Spear, Dian
Date Created
2008Format Extent
6031872 bytes657920 bytes
253440 bytes
557056 bytes
1185792 bytes
36864 bytes
45568 bytes
137728 bytes
207872 bytes
52242432 bytes
12374528 bytes
201216 bytes
192000 bytes
77312 bytes
Rights
copyrightMetadata
Show full item recordAbstract
The worldwide movement of biota is of substantial concern for the conservation of biodiversity. The movement of species takes place at three different scales. These are translocations of indigenous species within their natural distribution ranges, the translocation of species outside their natural distribution ranges within geopolitical boundaries (i.e. extralimital introductions) and the translocation of species outside geopolitical boundaries and their natural distribution ranges (i.e. extraregional introductions). Ungulates are extensively translocated at each of these scales and each scale of translocation is expected to have different impacts on biodiversity. Ungulates are translocated for conservation purposes such as reintroducing species to places where they have previously gone extinct and to mitigate inbreeding in small, isolated populations. Ungulates are also extensively translocated for economic and recreational reasons, such as for sport hunting. Translocations for sport hunting include indigenous, extralimital and extraregional species. Concerns for translocations of indigenous species are largely for the loss of genetic diversity through the mixing of genetically distinct populations, and concerns for extralimital and extraregional translocations are for impacts on indigenous biodiversity such as through herbivory, competition, hybridization and disease transmission. This thesis investigates the extent of ungulate introductions globally and at a finer resolution in South Africa. It investigates the pathways, drivers and impacts of ungulate introductions and it also investigates the use of surrogates for genetic distinctiveness for advising the translocation of indigenous ungulates. The study finds that ungulate translocations have been extensive and have lead to the homogenization of ungulate assemblages in countries globally and at a quarter-degree grid-cell resolution in South Africa. Zoos were identified as a potential introduction pathway for extraregional ungulates globally and in South Africa extraregional introductions have made ungulate assemblages more different; whereas large numbers of extralimital introductions have made ungulate assemblages more similar. The homogenization of ungulate species in South Africa has increased with time, due to increased numbers of translocations, particularly of extralimital species. In South Africa translocations have most recently been made to high-income areas with high human population density and high livestock density; whereas in the 1960s ungulates were introduced to areas species poor for indigenous ungulates and marginal for livestock. In South Africa, long distance translocations of indigenous species extralimitally has resulted in extensive range expansions of a magnitude greater than predicted range changes as a result of predicted climate change. When the use of surrogates of genetic distinctiveness for advising translocations was investigated for Africa, the East African rift valley was found to be important in delineating genetic distinctiveness and translocations across this feature should be prevented. Major rivers in Africa also showed potential for delineating genetic distinctiveness in ungulates, but relevant phylogeographic data are needed to confirm this. Sufficient evidence for the impacts of non-indigenous ungulates on biodiversity both in South Africa and globally is lacking despite substantial concern for their impacts. It is suggested that to demonstrate the impacts of non-indigenous ungulates exclosure and enclosure experiments should be used and population declines in indigenous species should be shown.