Show simple item record

dc.contributor.authorYelenik, SG
dc.contributor.authorStock, WD
dc.contributor.authorRichardson, DM
dc.date.accessioned2007-05-16T13:50:41Z
dc.date.available2007-05-16T13:50:41Z
dc.date.issued2007-03
dc.identifier.citationYelenik, S. G., W. D. Stock, et al. 2007. Functional group identity does not predict invader impacts: differential effects of nitrogen-fixing exotic plants on ecosystem function. Biological Invasions 9(2): 117-125.en
dc.identifier.issn1387-3547en
dc.identifier.urihttp://hdl.handle.net/123456789/278
dc.description.abstractThe introduction of exotic plants can have large impacts on ecosystem functions such as soil nutrient cycling. Since these impacts result from differences in traits between the exotic and resident species, novel physiological traits such as N cycling may cause large alterations in ecosystem function. It is unclear, however, whether all members of a given functional group will have the same ecosystem effects. Here we look at a within functional group comparison to test whether an annual (Lupinus luteus) and a perennial (Acacia saligna) N-fixing exotic species cause the same effects on soil N cycling in the fynbos vegetation of South Africa. We measured litterfall quantity and quality, and soil total nitrogen and organic matter for each vegetation type as well. Available nitrogen was quantified using ion exchange resin bags monthly for I year. We used microcosms to evaluate litter decomposition. Although both exotic species increased the available nitrogen in the soil, only Acacia increased the total soil N and organic matter. This could be explained by the slow decomposition of Acacia litter in the microcosm study, despite the fact that Acacia and Lupinus litter contained equivalent N concentrations. Presumably, low carbon quality of Acacia litter slows its decomposition in soil, resulting in retention of organic nitrogen in Acacia stands after clearing for restoration purposes. The differences in long term impacts of these annual and perennial species highlight the fact that not all N-fixing exotic species exert equivalent impacts. Ecologists should consider multiple traits rather than broadly defined functional groups alone when predicting invader impacts.en
dc.description.sponsorshipCentre for Invasion Biologyen
dc.format.extent229495 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherSPRINGER, VAN GODEWIJCKSTRAATen
dc.subjectSouth-africaen
dc.subjectfynbos ecosystemen
dc.subjectAcacia salignaen
dc.subjectavailable soil nitrogen;en
dc.subjectexotic plantsen
dc.subjectfynbosen
dc.subjectlitteren
dc.subjectLupinus luteusen
dc.subjectorganic soil nitrogenen
dc.subjectcape-provinceen
dc.subjectprotea-repensen
dc.subjectSouth Africaen
dc.subjectglobalen
dc.subjectinvasionen
dc.subjecttraitsen
dc.subjectshruben
dc.subjectsustainabilityen
dc.subjectconsequencesen
dc.titleFunctional group identity does not predict invader impacts: differential effects of nitrogen-fixing exotic plants on ecosystem functionen
dc.typeOtheren
dc.cibjournalBiological invasionsen
dc.cibprojectInvasive and remediation effects on biodiversityen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record